import Serializable from './Serializable';
import BaseTypes from './BaseTypes';
import ThreeVector from './ThreeVector';
const SHOW_AS_AXIS_ANGLE = true;
const MAX_DEL_THETA = 0.2;
/**
* A Quaternion is a geometric object which can be used to
* represent a three-dimensional rotation.
*/
class Quaternion extends Serializable {
static get netScheme() {
return {
w: { type: BaseTypes.TYPES.FLOAT32 },
x: { type: BaseTypes.TYPES.FLOAT32 },
y: { type: BaseTypes.TYPES.FLOAT32 },
z: { type: BaseTypes.TYPES.FLOAT32 }
};
}
/**
* Creates an instance of a Quaternion.
* @param {Number} w - first value
* @param {Number} x - second value
* @param {Number} y - third value
* @param {Number} z - fourth value
* @return {Quaternion} v - the new Quaternion
*/
constructor(w, x, y, z) {
super();
this.w = w;
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Formatted textual description of the Quaternion.
* @return {String} description
*/
toString() {
function round3(x) { return Math.round(x * 1000) / 1000; }
if (SHOW_AS_AXIS_ANGLE) {
let axisAngle = this.toAxisAngle();
return `[${round3(axisAngle.angle)},${axisAngle.axis.toString()}]`;
}
return `[${round3(this.w)}, ${round3(this.x)}, ${round3(this.y)}, ${round3(this.z)}]`;
}
/**
* copy values from another quaternion into this quaternion
*
* @param {Quaternion} sourceObj the quaternion to copy from
* @return {Quaternion} returns self
*/
copy(sourceObj) {
this.set(sourceObj.w, sourceObj.x, sourceObj.y, sourceObj.z);
return this;
}
/**
* set quaternion values
*
* @param {Number} w w-value
* @param {Number} x x-value
* @param {Number} y y-value
* @param {Number} z z-value
* @return {Quaternion} returns self
*/
set(w, x, y, z) {
this.w = w;
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* return an axis-angle representation of this quaternion
*
* @return {Object} contains two attributes: axis (ThreeVector) and angle.
*/
toAxisAngle() {
// assuming quaternion normalised then w is less than 1, so term always positive.
let axis = new ThreeVector(1, 0, 0);
this.normalize();
let angle = 2 * Math.acos(this.w);
let s = Math.sqrt(1 - this.w * this.w);
if (s > 0.001) {
let divS = 1 / s;
axis.x = this.x * divS;
axis.y = this.y * divS;
axis.z = this.z * divS;
}
if (s > Math.PI) {
s -= 2 * Math.PI;
}
return { axis, angle };
}
normalize() {
let l = Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
if (l === 0) {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
} else {
l = 1 / l;
this.x *= l;
this.y *= l;
this.z *= l;
this.w *= l;
}
return this;
}
/**
* set the values of this quaternion from an axis/angle representation
*
* @param {ThreeVector} axis The axis
* @param {Number} angle angle in radians
* @return {Quaternion} returns self
*/
setFromAxisAngle(axis, angle) {
if (angle < 0)
angle += Math.PI * 2;
let halfAngle = angle * 0.5;
let s = Math.sin(halfAngle);
this.x = axis.x * s;
this.y = axis.y * s;
this.z = axis.z * s;
this.w = Math.cos(halfAngle);
return this;
}
/**
* conjugate the quaternion, in-place
*
* @return {Quaternion} returns self
*/
conjugate() {
this.x *= -1;
this.y *= -1;
this.z *= -1;
return this;
}
/* eslint-disable */
/**
* multiply this quaternion by another, in-place
*
* @param {Quaternion} other The other quaternion
* @return {Quaternion} returns self
*/
multiply(other) {
let aw = this.w, ax = this.x, ay = this.y, az = this.z;
let bw = other.w, bx = other.x, by = other.y, bz = other.z;
this.x = ax * bw + aw * bx + ay * bz - az * by;
this.y = ay * bw + aw * by + az * bx - ax * bz;
this.z = az * bw + aw * bz + ax * by - ay * bx;
this.w = aw * bw - ax * bx - ay * by - az * bz;
return this;
}
/* eslint-enable */
/* eslint-disable */
/**
* Apply in-place slerp (spherical linear interpolation) to this quaternion,
* towards another quaternion.
*
* @param {Quaternion} target The target quaternion
* @param {Number} bending The percentage to interpolate
* @return {Quaternion} returns self
*/
slerp(target, bending) {
if (bending <= 0) return this;
if (bending >= 1) return this.copy(target);
let aw = this.w, ax = this.x, ay = this.y, az = this.z;
let bw = target.w, bx = target.x, by = target.y, bz = target.z;
let cosHalfTheta = aw*bw + ax*bx + ay*by + az*bz;
if (cosHalfTheta < 0) {
this.set(-bw, -bx, -by, -bz);
cosHalfTheta = -cosHalfTheta;
} else {
this.copy(target);
}
if (cosHalfTheta >= 1.0) {
this.set(aw, ax, ay, az);
return this;
}
let sqrSinHalfTheta = 1.0 - cosHalfTheta*cosHalfTheta;
if (sqrSinHalfTheta < Number.EPSILON) {
let s = 1 - bending;
this.set(s*aw + bending*this.w, s*ax + bending*this.x, s*ay + bending*this.y, s*az + bending*this.z);
return this.normalize();
}
let sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
let halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
let delTheta = bending * halfTheta;
if (Math.abs(delTheta) > MAX_DEL_THETA)
delTheta = MAX_DEL_THETA * Math.sign(delTheta);
let ratioA = Math.sin(halfTheta - delTheta)/sinHalfTheta;
let ratioB = Math.sin(delTheta)/sinHalfTheta;
this.set(aw*ratioA + this.w*ratioB,
ax*ratioA + this.x*ratioB,
ay*ratioA + this.y*ratioB,
az*ratioA + this.z*ratioB);
return this;
}
/* eslint-enable */
}
export default Quaternion;